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1 List of symbols

Symbol Description Units

a, b, c coefficients of a general quadratic equation
E energy (kinetic + potential) J
EK kinetic energy J
EP potential energy J
Fy vertical force due to gravity during ballistic flight N
g gravitational acceleration m/s2

h0 rest height of pendulum m
L length of pendulum m
λ root of a general quadratic equation
m mass of projectile kg
θ angle of pendulum from vertical rad
θR angle of pendulum from vertical at release rad
θmax maximum angle of pendulum from vertical rad
sx horizontal distance covered by projectile m
t time since release s
ti time at impact s
tR time at release s
V speed of projectile m/s2

V + additional velocity imparted to projectile at release m/s
VR total speed of projectile at release m/s2

x horizontal position m
xR horizontal position at release m
ẋ horizontal velocity m/s
ẋR horizontal velocity at release m/s
y vertical position m
yR vertical position at release m
ẏ vertical velocity m/s
ẏR vertical velocity at release m/s
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Part I

Introduction

2 Problem definition: Long Shot

This problem was defined in “The Last Word” of New Scientist,

“My five-year old daughter wants to know if you spit a cherry
stone while swinging on a swing, would it go farthest if you spit
it while you are at the lowest point of the swing (because you are
moving so fast), or would it be better to spit it at the highest
point?”

3 Assumptions

1. The swing is rigid in tension (i.e. it will trace a circular arc)

2. Frictional effects are neglected

3. The swing is not being pushed at the time of release

4. The projectile will be released tangentially to the motion of the swing

5. Air resistance and wind are neglected

6. The ground is flat and there are no obstructions in the flight path

7. The projectile will not bounce on impact

4 Flight profile

There are three distinct phases in the flight of our projectile.

1. For the first part of the flight, the projectile is constrained to follow a
circular trajectory (inside the head of the child) and can be considered
in a similar manner to that of a pendulum of length L where L is the
distance between the pivot of the swing and the child’s head. The
motion of the projectile may be described by the equations of “Simple
Harmonic Motion”.
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2. The second phase of the flight is the release. It can be assumed that
the projectile is ejected tangentially to the motion of the swing and
that a constant additional velocity VR will be imparted to it, regardless
of the angle of the swing at the time of release.

3. The final phase of the flight is ballistic, similar to a thrown ball. Ne-
glecting air resistance and wind, the only force acting on the projectile
in this phase is the gravitational attraction of the Earth.
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Part II

Equations of motion

5 Simple Harmonic Motion
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Figure 1: Pendulum (Simple Harmonic Motion)

The position of the projectile while constrained to follow the circular arc
of a pendulum is

x(θ) = L sin(θ)

y(θ) = L (1 − cos(θ)) + h0

(1)
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where x is the horizontal position, y is the vertical position, L is the distance
from the pivot, θ is the angle of the pendulum measured from the vertical axis
and h0 is the height above the ground of the projectile when the pendulum
is vertical.

The velocity at any point in the trajectory can be determined by the
equation

V (θ) =
√

2 g L (cos(θ) − cos(θmax)) (2)

where g is the acceleration due to gravity and θmax is the maximum angle
that the pendulum makes with the vertical axis, i.e. the angle at which it
reverses direction.

5.1 Derivation of particle velocity

The velocity of the particle may be determined from consideration of its
energy. The particle’s potential energy EP is

EP (θ) = m g y(θ) (3)

and its kinetic energy EK is

EK(θ) =
1

2
m V 2(θ) (4)

where m is the mass of the particle, g is the gravitational attraction due to
the mass of the Earth (g ≈ 9.81m/s), V is the speed of the particle (velocity
tangential to its motion) and y its height above the ground.

The total energy of the particle at any point in its trajectory is equal to
sum of its potential energy and its kinetic energy

E(θ) = EK(θ) + EP (θ)

=
1

2
m V 2(θ) + m g y(θ)

(5)

Substituting for y(θ) from equation (1), the energy can be expressed as

E(θ) =
1

2
m V 2(θ) + m g (L (1 − cos(θ)) + h0) (6)

Now, we know that at its maximum displacement, the swing’s velocity is
zero, i.e.

E(θmax) = m g (h + L (1 − cos(θmax))) + 0 (7)

Conservation of energy means that in the absence of friction,

E(θ) = E(θmax) (8)
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We can therefore equate the right hand sides of equations (6) and (7)

m g (h+L (1− cos(θ)))+
1

2
m V 2(θ) = m g (h+L (1− cos(θmax)))+0 (9)

Dividing both sides by m and re-arranging gives the speed V as a function
of angle θ

V (θ) =
√

2 g L (cos(θ) − cos(θmax))

6 Release

At the time of release, the particle is moving with velocity V (θR) (governed by
equation (2)) at a position (xR, yR). The speed of the projectile immediately
after release VR is

VR = V (θR) + V + (10)

where V + is the additional velocity imparted during ejection. It is assumed
that this velocity is in the same direction as V (θR). The particle’s position
immediately after release (xR,yR) is

xR = L sin(θR)

yR = L (1 − cos(θR)) + h0

(11)

The velocity may be resolved into components parallel with the x and y axis

ẋR = (VR + V +) cos(θR)

ẏR = (VR + V +) sin(θR)
(12)

7 Ballistic Motion

The only force acting on the projectile during its ballistic phase of flight is
the force of gravity. There is no horizontal component to this gravitational
force so the x-component of the particle velocity will remain constant until
the particle hits the ground

ẋ(t) = ẋR (13)

The total distance covered by the particle sx will be given by the distance
covered while airborne, equal to the x-component of velocity ẋ times the
length of time for which it is airborne t, added to its position at the time of
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Figure 2: Ballistic Motion

release

sx = xR +

∫ ti

0

ẋ(t) dt

= xR +

∫ ti

0

ẋR dt

= xR + ẋR ti

(14)

The length of time for which the projectile is airborne may be determined
from consideration of its vertical motion. Its vertical acceleration ÿ is of
equal magnitude to the acceleration due to gravity

ÿ = −g (15)

The vertical velocity ẏ at any time t is then given by

ẏ(t) = ẏR +

∫ t

0

−g dt

= ẏR − g t

(16)

Integrating this again with respect to time gives the particle’s position at
any time t after release

y(t) = yR +

∫ t

0

(ẏR − g t) dt

= yR + ẏR t −
1

2
g t2

(17)
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Now, if the ground is level, we know that at the time of impact ti the
vertical position of the particle must be zero (y(ti) = 0). Substituting this
into the equation for the particle’s velocity gives a quadratic equation in ti

which can be solved

y(ti) = yR + ẏR ti −
1

2
g t2 = 0 (18)

Solving the quadratic using

λ =
−b ±

√
b2 − 4 a c

2 a
(General solution to quadratic equation)

gives two possible solutions

λ1 =
ẏR

g
+

√

ẏ2
R + 2 g yR

g

λ2 =
ẏR

g
−

√

ẏ2
R + 2 g yR

g

(19)

Assuming that the projectile was released with positive y and ẏ, the first
solution λ1 is clearly the one to use. λ2 will be negative and refers to the
time at which the projectile would have been launched if it had been fired
on a ballistic trajectory from the ground level.

ti = λ1 =
ẏR

g
+

√

ẏ2
R + 2 g yR

g
(20)
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Part III

Results

8 Distance as a function of release angle
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Figure 3: Maximum distance as a function of release angle
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A Plotting the results

A GNU Octave[1] script was created to plot the results. GNU Octave is available
from http://www.octave.org

#! /usr/bin/octave -f

## -*-octave-*-

parameters.g = 9.81; # gravitational acceleration [m/s^2]

parameters.h = 0.5; # height of pip above ground [m]

parameters.L = 1.0; # distance from pivot to pip [m]

parameters.theta_max = 2*pi/3; # maximum angle of pendulum [rad]

parameters.theta_rel = pi/2; # release angle of pendulum [rad]

parameters.Vplus = 1.0; # extra velocity at release [m/s]

#############################################################

function [x, y, xdot, ydot] = pendulum (parameters)

## position and velocity of a pendulum for a given angle from vertical

##

## x [m] distance along x axis (horizontal)

## y [m] distance along y axis (vertical)

## v_x [m/s] velocity along x axis

## v_y [m/s] velocity along y axis

g = parameters.g;

h = parameters.h;

L = parameters.L;

theta_max = parameters.theta_max;

theta_rel = parameters.theta_rel;

## tangential velocity of an ideal pendulum

v_t = sqrt (2*g*L*(cos(theta_rel)-cos(theta_max)));

## x and y co-ordinates [m]

x = L * sin(theta_rel);

y = L * (1 - cos(theta_rel)) + h;

## x and y velocities [m/s]

xdot = v_t * cos(theta_rel);

ydot = v_t * sin(theta_rel);

endfunction

#############################################################
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function s_x = flight (parameters)

g = parameters.g; [xr, yr, xdot, ydot] = pendulum (parameters);

xdotr = xdot ...

+ parameters.Vplus * parameters.L * cos(parameters.theta_rel);

ydotr = ydot ...

+ parameters.Vplus * parameters.L * sin(parameters.theta_rel);

ti = ydotr / parameters.g ...

+ sqrt(ydotr^2 + 2*parameters.g*yr) / parameters.g;

s_x = xr + xdotr * ti;

endfunction

#############################################################

function plot_results (parameters)

for j = [1:6]

i = 0;

parameters.theta_max = j * pi/12;

for theta = linspace (-pi/8, 3*pi/4, 100)

i++;

parameters.theta_rel = theta;

data(i, 1 ) = theta;

if (abs(theta) < parameters.theta_max)

data(i, 1+j) = flight (parameters);

else

data(i, 1+j) = 0;

endif

if (data(i, 1+j) <= 0)

data(i, 1+j) = nan; # don’t plot y=0

endif

endfor;

endfor;

oneplot;

gset title "maximum distance versus angle"

gset xlabel "release angle [degrees]"

gset ylabel "maximum distance [metres]"

gset key

gset grid

gset xtics 10

eval(sprintf("gset label \"h = %g m , L = %g m , V+ = %g m/s\" at \

80,0.25 right ", parameters.h, parameters.L, parameters.Vplus));

gset label "q =" at 60,3.5 left font "Symbol,20"

gset label "max" at 61,3.4

plot (data(:,1)*180/pi, data(:,2), ’-;15 deg;’,
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data(:,1)*180/pi, data(:,3), ’-;30 deg;’,

data(:,1)*180/pi, data(:,4), ’-;45 deg;’,

data(:,1)*180/pi, data(:,5), ’-;60 deg;’,

data(:,1)*180/pi, data(:,6), ’-;75 deg;’,

data(:,1)*180/pi, data(:,7), ’-;90 deg;’)

gset output "results.eps";

gset terminal postscript eps;

replot;

endfunction

#############################################################

function test_pendulum (parameters)

n = 101;

theta = linspace (-parameters.theta_max, parameters.theta_max, n);

for i = 1 : n

parameters.theta_rel = theta(i);

[x(i), y(i), xdot(i), ydot(i)] = pendulum (parameters);

endfor;

v_t = sqrt(xdot.^2 .+ ydot.^2);

data = [x, y, v_t];

gset autoscale x

gset autoscale y

gset nokey

gset grid xtics

multiplot(2,2)

subwindow(1,1)

gset title "speed versus x and y position"

gset grid xtics ytics ztics

gset xlabel ’x [m]’

gset ylabel ’y [m]’

gset zlabel ’speed [m/s]’

gset view 45 , 45

gset parametric

gsplot data title ’pendulum’ with points

gset noparametric

subwindow(2,1)

gset title "speed versus angle"

gset polar

gset grid polar

gset size square

polar_data = [theta’, v_t];
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gset xrange [-8:8]

gset yrange [-8:8]

gplot polar_data with points

gset nopolar

gset grid nopolar

gset size nosquare

gset autoscale x

gset autoscale y

subwindow(1,2)

gset title "y position versus x position"

gset grid xtics ytics

gset xlabel ’x position [m]’

gset ylabel ’y position [m]’

plot (x, y)

subwindow(2,2)

gset title "speed versus x position"

gset grid xtics ytics

gset xlabel ’x position [m]’

gset ylabel ’speed [m/s]’

plot (x, v_t);

endfunction

#############################################################

## test_pendulum (parameters); pause;

plot_results (parameters);
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